Greenhouse gas emissions and biogas potential from livestock in Ecuador (2024)

Related Papers

Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil

Ciniro Costa Junior

As part of an agreement during the COP15, the Brazilian government is fostering several activities intended to mitigate greenhouse gas (GHG) emissions. One of them is the adoption of anaerobic digester (AD) for treating animal manure. Due to a lack of information, we developed a case study in order to evaluate the effect of such initiative for beef cattle feedlots. We considered the net GHG emissions (CH 4 and N 2 O) from the manure generated from 140 beef heifers confined for 90 days in the scope " housing to field application " by including field measurements , literature values, and the offset generated by the AD system through the replacement of conventional sources of nitrogen (N) fertilizer and electricity, respectively. Results showed that direct GHG emissions accounted for 0.14 ± 0.06 kg of carbon dioxide equivalent (CO 2 eq) per kg of animal live weight gain (lwg), with ~80% originating from field application, suggesting that this emission does not differ from the conventional manure management (without AD) typically done in Brazil (0.19 ± 0.07 kg of CO 2 eq per kg lwg −1). However, 2.4 MWh and 658.0 kg of N-manure were estimated to be generated as a consequence of the AD utilization, potentially offsetting 0.13 ± 0.01 kg of CO 2 eq kg lwg −1 or 95% (±45%) of total direct emissions from the manure management. Although, by replacing fossil fuel sources, i.e. diesel oil, this offset could be increased to 169% (±47%). In summary, the AD has the potential to significantly mitigate GHG emissions from manure management in beef cattle feedlots, but the effect is indirect and highly dependent on the source to be replaced. In spite of the promising results, more and continuous field measurements for decreasing uncertainties and improving assumptions are required. Identifying shortcomings would be useful not only for the effectiveness of the Brazilian government, but also for worldwide plans in mitigating GHG emissions from beef production systems.

View PDF

Energies

Environmentally Sustainable Biogas? The Key Role of Manure Co-Digestion with Energy Crops

2015 •

Vincenzo Tabaglio, Luisa Marelli

View PDF

Energies

Energy and Economic Balance between Manure Stored and Used as a Substrate for Biogas Production

The aim of the study is to draw attention to the fact that reducing methane and nitrous oxide emissions as a result of traditional manure storage for several months in a pile is not only a non-ecological solution, but also unprofitable. A solution that combines both aspects—environmental and financial—is the use of manure as a substrate for a biogas plant, but immediately—directly after its removal from the dairy barn. As part of the case study, the energy and economic balance of a model farm with dairy farming for the scenario without biogas plant and with a biogas plant using manure as the main substrate in methane fermentation processes was also performed. Research data on the average emission of ammonia and nitrous oxide from 1 Mg of stored manure as well as the results of laboratory tests on the yield of biogas from dairy cows manure were obtained on the basis of samples taken from the farm being a case study. The use of a biogas installation would allow the emission of carbon ...

View PDF

Anaerobic digestion of swine manure: Stratified production units and its biogas potential

Ricardo Steinmetz, Airton Kunz

View PDF

Waste Management

Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru

2009 •

Adrian Ruiz

View PDF

Economics and Environmental Impact of Biogas Production as a Manure Management Strategy

2000 •

Ronald Lacewell

Conversion of animal waste to biogas through anaerobic digestion processes can provide added value to manure as an energy resource and reduce environmental problems associated with animal wastes. An anaerobic digester located at the Kirk Carrell Dairy in Johnson County near Godley, Texas, has been renovated as a demonstration of current anaerobic digestion technology for treatment of animal waste and

View PDF

animal

Anaerobic digestion of agricultural and other substrates – implications for greenhouse gas emissions

2013 •

Gerfried Jungmeier

View PDF

Sustainability

Evaluation of biogas potential from livestock manures and multicriteria site selection for centralized anaerobic digester systems: The Case of Jalisco, México

2020 •

Demetrio Meza Rodriguez

The state of Jalisco is the largest livestock producer in Mexico, leading in the production of swine, eggs, and milk. This immense production generates enormous amounts of waste as a byproduct of the process itself. The poor management of livestock-derived waste can lead to multiple environmental problems like nutrient accumulation in soil, water eutrophication, and air pollution. The aim of this work is to establish a replicable geographic information system (GIS)-based methodology for selecting priority sites in which to implement anaerobic digestion units. These units will use multiple parameters that evaluate environmental risks and viability factors for the units themselves. A weighted overlay analysis was used to identify critical regions and, based on the results, clusters of individual livestock production units (LPUs) across the state were selected. Nitrogen and phosphorus recovery, as well as the energetic potential of the selected clusters, were calculated. Four clusters located mainly in the Los Altos region of Jalisco were selected as critical and analyzed. The results indicate that Jalisco has the potential to generate 5.5% of its total electricity demand if the entirety of its livestock waste is treated and utilized in centralized anaerobic digestion units. Additionally, 49.2 and 31.2 Gg of nitrogen and phosphorus respectively could be valorized, and there would be an estimated total reduction of 3012.6 Gg of carbon dioxide equivalent (CO2eq).

View PDF

The Open Waste Management Journal

Trade-offs between Manure Management with and without Biogas Production

2018 •

Mitra Kami Delivand

Introduction: In rural developing countries with a traditional manure management, animal manure is a value-added agricultural commodity being utilized as a source of fuel and plant nutrients. The sustainable environmental management of this resource has to consider the whole upstream and downstream activities of current management systems. Methods & Materials: In line with this requirement, this study has integrated the Intergovernmental Panel on Climate Change (IPCC) method on manure managements into the life-cycle assessment of two different manure management systems: the traditional system without biogas production and the alternative system with biogas production. Special attention is given to compare the GHG emissions as well as Nitrogen (N), Phosphorous (P), and Potassium (K) Fertilizing Nutrients (NPK) from the two systems. Results: The great advantage of manure conversion to biogas is mainly due to the avoided wood (18 kg/animal.yr), crop-residues (12 kg/ animal.yr) and dung...

View PDF

Biomass and Bioenergy

Biogas production in low-cost household digesters at the Peruvian Andes

Ivet Ferrer

Low-cost tubular digesters originally developed in tropical regions have been adapted to the extreme weather conditions of the Andean Plateau (3000–4000 m.a.s.l.). The aim of this study was to characterise biogas production in household digesters located at high altitude, operating under psychrophilic conditions. To this end, two pilot digesters were monitored and field campaigns were carried out in two representative digesters of rural communities. Digesters’ useful volume ranged between 2.4 and 7.5 m3, and hydraulic residence time (HRT) between 60 and 90 days. The temperature inside the digester’s greenhouse ranged between 20 and 25 °C. Treating cow manure, a specific biogas production around 0.35 m3 kgVS−1 was obtained, with some 65% CH4 in biogas. In order to fulfil daily requirements for cooking and lighting, biogas production should be enhanced without increasing implementation costs as not to impede the expansion of this technology at household scale. In this sense, HRT below...

View PDF
Greenhouse gas emissions and biogas potential from livestock in Ecuador (2024)
Top Articles
Latest Posts
Article information

Author: Ms. Lucile Johns

Last Updated:

Views: 5979

Rating: 4 / 5 (41 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Ms. Lucile Johns

Birthday: 1999-11-16

Address: Suite 237 56046 Walsh Coves, West Enid, VT 46557

Phone: +59115435987187

Job: Education Supervisor

Hobby: Genealogy, Stone skipping, Skydiving, Nordic skating, Couponing, Coloring, Gardening

Introduction: My name is Ms. Lucile Johns, I am a successful, friendly, friendly, homely, adventurous, handsome, delightful person who loves writing and wants to share my knowledge and understanding with you.